Fast EM Principal Component Analysis Image Registration Using Neighbourhood Pixel Connectivity
نویسندگان
چکیده
Image registration (IR) is the systematic process of aligning two images of the same or different modalities. The registration of mono and multimodal images i.e., magnetic resonance images, pose a particular challenge due to intensity non-uniformities (INU) and noise artefacts. Recent similarity measures including regional mutual information (RMI) and expectation maximisation for principal component analysis with MI (EMPCA-MI) have sought to address this problem. EMPCA-MI incorporates neighbourhood region information to iteratively compute principal components giving superior IR performance compared with RMI, though it is not always effective in the presence of high INU. This paper presents a modified EMPCA-MI (mEMPCA-MI) similarity measure which introduces a novel pre-processing step to exploit local spatial information using 4-and 8-pixel neighbourhood connectivity. Experimental results using diverse image datasets, conclusively demonstrate the improved IR robustness of mEMPCA-MI when adopting second-order neighbourhood representations. Furthermore, mEMPCA-MI with 4-pixel connectivity is notably more computationally efficient than EMPCA-MI.
منابع مشابه
A New IRIS Segmentation Method Based on Sparse Representation
Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...
متن کاملA New IRIS Segmentation Method Based on Sparse Representation
Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...
متن کاملMulti Model Image Registration and Fusion using Fast Discrete Contourlet Transform
This paper proposes Transform Domain Fusion Rule (TDFR) via high pass modulation using Local Magnitude Ratio (LMR) in Fast Discrete Contour let Transform (FDCT) domain. Contour let transform method uses low resolution multispectral image and Cartosat-1 Panchromatic (PAN) of spatial resolution 2.5m is used as high resolution panchromatic image. This both images are up sampled in order to resize ...
متن کاملMedical Image Registration and Fusion Using Principal Component Analysis
Principal Component Analysis (PCA) is widely used in the field of medical image processing. In this paper, PCA is applied to align and fuse the images. When alignment, first, the centroids of the static and moving images are derived by computing the image moments and taken as the translation values for registration, then the subtraction of two rotation angles produced by using PCA to solve the ...
متن کاملPixel selection by successive projections algorithm method in multivariate image analysis for a QSAR study of antimicrobial activity for cephalosporins and design new cephalosporins
Thirty-one Cephalosporin compounds were modeled using the multivariate image analysis and applied to the quantitative structure activity relationship (MIA-QSAR) approach. The acid dissociation constants (pKa) of cephalosporins play a fundamental role in the mechanism of activity of cephalosporins. The antimicrobial activity of cephalosporins was related to their first pKa by different models. B...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013